Các công thức đạo hàm cơ bản

Đạo hàm của một số hàm số thường gặp
Định lý 1: Hàm số \(y = {x^n}(n \in \mathbb{N},n > 1\)) có đạo hàm với mọi \(x \in\mathbb{R}\) và: \({\left( {{x^n}} \right)’} = n{x^{n – 1}}.\)
Nhận xét:
(c)’=0 (với c là hằng số).
(x)’=1.
Định lý 2: Hàm số \(y= \sqrt x\) có đạo hàm với mọi x dương và: \(\left( {\sqrt x } \right)’ = \frac{1}{{2\sqrt x }}.\)
Đạo hàm của tổng, hiệu, tích, thương
Định lý 3: Giả sử \(u = u\left( x \right)\) và \(v = v\left( x \right)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:
\({\left( {u + v} \right)’} = {u’} + {v’}\)
\({\left( {u – v} \right)’} = {u’} – {v’}\)
\({\left( {u.v} \right)’} = {u’}.v + u.{v’}\)
\(\left ( \frac{u}{v} \right )’=\frac{u’v-uv’}{v^2},(v(x) \ne 0)\)
Mở rộng:
\(({u_1} + {u_2} + … + {u_n})’ = {u_1}’ + {u_2}’ + … + {u_n}’.\)
Hệ quả 1: Nếu k là một hằng số thì: \((ku)’=ku’.\)
Hệ quả 2: \({\left( {\frac{1}{v}} \right)’} = – \frac{{ – v’}}{{{v^2}}}\) , \((v(x)\ne 0)\)
\((u.v.{\rm{w}})’ = u’.v.{\rm{w}} + u.v’.{\rm{w}} + u.v.{\rm{w}}’\)
Đạo hàm với hàm hợp
Định lý: Cho hàm số \(y=f(u)\) với \(u=u(x)\) thì ta có: \(y’_u=y’_u.u’_x.\)
Hệ quả:
\(({u^n}) = n.{u^{n – 1}}.u’,n \in \mathbb{N}^*.\)
\(\left( {\sqrt u } \right)’ = \frac{{u’}}{{2\sqrt u }}.\)
Bảng công thức đạo hàm
Hàm số | Hàm hợp tương ứng |
\({\left( C \right)^\prime } = 0\,\,\,\,\,;\,\,\,\,{\left( x \right)^\prime } = 1\) | |
\({\left( {{x^n}} \right)^\prime } = n.{x^{n – 1}}\,\,\left( {n \in \mathbb{N}\,\,,\,\,n \ge 2} \right)\) | \({\left( {{u^n}} \right)^\prime } = n.{u^{n – 1}}.u’\,\,\,\,\,,\,\,\,\left( {n \in \mathbb{N}\,\,,\,\,n \ge 2} \right)\) |
\({\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\,\,\,\,,\,\,\left( {x > 0} \right)\) | \(\,\,\,{\left( {\sqrt u } \right)^\prime } = \frac{{u’\,}}{{2\sqrt u }}\,\,\,\,\,,\,\,\left( {u > 0} \right)\) |
\({\left( {\sin x} \right)^\prime } = \cos x\,\,\,\) | \({\left( {\sin u} \right)^\prime } = u.’\cos u\) |
\({\left( {\cos x} \right)^\prime } = – \sin x\,\) | \({\left( {\cos u} \right)^\prime } = – u’.\sin u\) |
\({\left( {\tan x} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\,\,\) | \(\,\,{\left( {\tan u} \right)^\prime } = \frac{{u’}}{{{{\cos }^2}u}}\,\) |
\({\left( {\cot x} \right)^\prime } = – \frac{1}{{{{\sin }^2}x}}\,\,\) | \(\,\,{\left( {\cot u} \right)^\prime } = – \frac{{u’}}{{{{\sin }^2}u}}\,\) |
Đạo hàm cấp 2
Định nghĩa đạo hàm cấp hai
Đạo hàm cấp hai
Hàm số \(y=f(x)\) có đạo hàm tại \(x \in (a;b).\)
Khi đó \(y’=f'(x)\) xác định một hàm sô trên (a;b).
Nếu hàm số \(y’=f'(x)\) có đạo hàm tại x thì ta gọi đạo hàm của y’ là đạo hàm cấp hai của hàm số \(y=f(x)\) tại x.
Kí hiệu: \(y”\) hoặc \(f”(x).\)
Công thức đạo hàm cấp cao (n)
Cho hàm số \(y=f(x)\) có đạo hàm cấp \(n-1,\) kí hiệu \(f^{\left ( n-1 \right )}(x)(n \in \mathbb{N}, n\geq 4)\) và nếu \(f^{\left ( n-1 \right )}(x)\) có đạo hàm thì đạo hàm của nó được gọi là đạo hàm câp n của \(y=f(x),\) kí hiệu \(y^{(n)}\) hoặc \(f^{(n)}(x).\)
\({f^{(n)}}(x) = {\rm{[}}{f^{(n – 1)}}(x){\rm{]}}’\)
Ý nghĩa cơ học
Đạo hàm cấp hai \(f”(t)\) là gia tốc tức thời của chuyển động \(S=f(t)\) tại thời điểm t.
Công thức đạo hàm lượng giác
Đạo hàm của hàm số y=sinx
Hàm số \(y=sin x\) có đạo hàm tại mọi \(x \in \mathbb{R}\) và \(\left( {\sin x} \right)’ = \cos x.\)
Nếu \(y=sin u\) và \(u=u(x)\) thì \((sin u)’=u’. \cos u.\)
Đạo hàm của hàm số y=cosx
Hàm số \(y=\cos x\) có đạo hàm tại mọi \(x \in \mathbb{R}\) và \(\left( {\cos x} \right)’ =-\sin x.\)
Nếu \(y=\cos u\) và \(u=u(x)\) thì \((cos u)’=-u’. \sin u.\)
Đạo hàm của hàm số y=tanx
Hàm số \(y=\tan x\) có đạo hàm tại mọi \(x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{R}\) và \(\left( {\tan x} \right)’ = \frac{1}{{{{\cos }^2}x}}.\)
Nếu \(y=tan u\) và \(u=u(x)\) thì \(\left( {\tan u} \right)’ = \frac{{u’}}{{{{\cos }^2}u}}.\)
Đạo hàm của hàm số y=cotx
Hàm số \(y=\cot x\) có đạo hàm tại mọi \(x \ne k\pi ,k \in \mathbb{R}\) và \(\left( {\cot x} \right)’ = – \frac{1}{{{{\sin }^2}x}}.\)
Nếu \(y=\cot u\) và \(u=u(x)\) thì \(\left( {\cot x} \right)’ = – \frac{{u’}}{{{{\sin }^2}u}}\).